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Abstract
We present exact integral representations of the time-dependent spin–spin
correlation functions for the classical Heisenberg N-spin ‘squashed’ equivalent
neighbour model, in which one spin is Heisenberg exchange-coupled with
strength J1 to the other N − 1 spins, each of which is Heisenberg exchange-
coupled with strength J2 to the remaining N − 2 spins. As the temperature
T → ∞, we calculate exactly the long-time asymptotic behaviour of the
correlation functions for arbitrary N, and compare our results with those
obtained for three spins on an isosceles triangle. At low T, the N spins
oscillate in four modes, one of which is a central peak for a semi-infinite
range of J2/J1 values. These results differ qualitatively from those obtained
for the N-spin equivalent neighbour model and the four-spin ring. Detailed
numerical evaluations of the behaviour of four spins on a squashed tetrahedron
are presented, including specific predictions relevant for neutron scattering
experiments on Fe4. In particular, two prominent peaks in the Fourier transform
of the correlation functions are predicted for Fe4, the positions of which provide
a measure of J1 and J2.

PACS numbers: 05.20.−y, 75.10.Hk, 75.75.+a, 05.45.−a

1. Introduction

Recently there has been a growing interest in the study of the properties of magnetic molecules
[1–5]. The defining characteristic of these substances is the presence of a small cluster of
magnetic ions located at the centre of each molecule and surrounded by a complicated structure
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of non-magnetic chemical ligand groups. In general, the strength of the magnetic interaction
between ions located in different molecules is negligible in comparison with the strength
of their intramolecular interactions. Therefore, measurements of the magnetic properties of
macroscopic samples reflect the underlying magnetic interactions within a single molecule.

The list of synthesized magnetic molecules has been constantly growing, even though
most of the experimental activity has been focused on the determination of the magnetic
properties of a molecule containing 12 manganese ions at its core, often referred to as Mn12.
The theoretical tools currently used to describe the behaviour of this relatively complicated
structure are still rudimentary, and are based on a single-spin phenomenological Hamiltonian
[1]. It is important to note that a number of molecular structures containing smaller numbers
of magnetic ions have already been synthesized. For some of these structures, it is possible
to perform a more detailed theoretical analysis of their magnetic behaviour starting from a
many-spin Hamiltonian.

Among the smaller clusters are a regular tetrahedron of Cr3+ ions (S = 3/2) [2, 3], Cr4,
and a squashed tetrahedron of Fe3+ ions (S = 5/2) [4, 5], Fe4. For increasing values of the
spin a description in terms of classical spins is expected to capture many of the features of
the system [6, 7], and the static properties of the classical Heisenberg squashed tetrahedron
were presented recently [8]. In the present paper we provide exact expressions for the
time-dependent spin–spin correlation functions for the classical Heisenberg N-spin squashed
equivalent neighbour model, which is the N-spin generalization of four classical Heisenberg
spins on the corners of a squashed tetrahedron. Specific numerical results for the squashed
tetrahedron case, N = 4, are provided. Analogous studies have recently appeared for three
spins on an isosceles triangle and on a chain [9], for four spins on a square ring [10], and
for the equivalent neighbour model of N classical spins [11], yielding qualitatively different
results.

Quantum time-dependent correlation functions have been computed for a dimer and for
three spins on an equilateral triangle [6, 7], and for a dimer of classical and quantum spins
in a constant magnetic field [12]. The time-dependent correlation functions are necessary to
analyse neutron scattering experiments. In that case, it was found that the classical results
for the Fourier transform of the correlation functions formed an accurate envelope of the set
of δ-functions present in the quantum calculation, especially for S = 5/2, provided that the
temperature T was not too low [12]. For increasing N, the quantum dynamics are increasingly
intractable, especially for systems with multiple interaction strengths, but the predictions from
classical calculations should be increasingly accurate. Since even for N = 4, the quantum
dynamics with two different interaction strengths are nearly intractable, the much simpler
classical predictions could prove extremely useful for comparison with experiment.

In section 2 we define the Hamiltonian, write the corresponding partition function and
present the constraints on the various correlation functions. In section 3 we present our analytic
results for arbitrary N. We evaluate the long-time behaviour of the correlation functions as
T → ∞, and provide analytic formulae for the low-T modes for arbitrary N. In section 4,
we present numerical results for the Fourier transforms of the autocorrelation functions at
low T for the squashed tetrahedron, N = 4, including specific predictions for experiments on
Fe4, the chosen parameters of which are consistent with magnetization experiments [4, 5].
In particular, we predict that two prominent peaks in the Fourier transform of the correlation
functions should be observable, the positions of which can provide a measure of J1 and J2.
Section 5 contains our conclusions, in which the striking differences in the low-T behaviour
between the squashed equivalent neighbour model and all other models that to date have been
solved exactly are stressed. A collection of intermediate steps useful to the calculations are
compiled in the appendix.
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2. The model, partition function and constraints

We consider N classical spins of unit magnitude, |Si | = 1, interacting according to the
Hamiltonian

H = −J2

2

M∑
i,j=1
i �=j

Si · Sj − J1SN ·
M∑
i=1

Si M ≡ N − 1 � 2. (1)

Introducing the total spin S = ∑N
i=1 Si and the auxiliary variable S1→M = ∑M

i=1 Si =
S − SN , the Hamiltonian (1) can be written as

H = −J1

2
S2 − J2 − J1

2
S2

1→M (2)

where we have dropped the constant energy (J1 + MJ2)/2. This model is the simplest
example of an integrable N-spin cluster with two different Heisenberg exchange interactions
[13]. Although changing the Heisenberg exchange interaction to the anisotropic XYZ form
can lead to chaotic behaviour [13], to our knowledge, neither such exchange anisotropy nor
chaotic behaviour has been shown to be present in any magnetic molecules that have been
studied to date, so we neglect such irrelevant complications.

The partition function can then be calculated following the technique described in
[10, 14]. Letting s = |S| and x = |S1→M |, one obtains

Z =
∫ M

0
dx DM(x)

∫ x+1

|x−1|
s ds exp(−βH)

= eα

α

∫ M

0
dx DM(x) exp(αγ x2) sinh(2αx) (3)

where β = (kBT )−1, α = βJ1/2, γ = J2/J1 and DM(x) is the classical M-spin density of
states [11], which we redisplayed in equation (A.12) in the appendix.

Previously, we solved these equations for the simplest case, M = 2 [9]. In that case, the
correlation functions were obtained from the double integrals over x and s, according to the
weighting factors in equation (3). For M � 3, however, an additional variable y can vary over
the entire range 0 � y � M −1. Hence, for the explicit evaluation of the correlation functions
with M � 3, it is useful to rewrite the expression of the partition function (3) in terms of a
triple integral over s, x and y,

Z =
∫ M−1

0
DM−1(y) dy

∫ y+1

|y−1|
dx

∫ x+1

|x−1|
s ds exp(−βH). (4)

We remark that the M = 2 case of the isosceles triangle is distinctly different from the
cases with M � 3 considered here, since the correlation functions for M = 2 were written as
double integrals, and for M � 3, they are triple integrals. It is therefore not obvious that the
results for M = 2 and for M � 3 would be similar.

We next analyse the constraints on the time-dependent spin–spin correlation functions

Cij (t) = 〈Si (t) · Sj (0)〉 (5)

where the thermal average 〈· · ·〉 is performed by averaging over the arbitrary phase φ0 defined
in the appendix and the variables s, x and y, with respect to the canonical ensemble defined by
equation (4). Due to the symmetry of the molecule, only four of the N(N + 1)/2 correlation
functions in equation (5) are distinct. We write these as C11(t), C12(t), C1N(t) and CNN(t).
Conservation of the total spin adds a constraint,

〈s2〉 = CNN(t) + MC11(t) + 2MC1N(t) + M(M − 1)C12(t). (6)
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Finally, by writing the multispin correlation function 〈S1→M(t) · S1→M(0)〉 in two ways, we
find a second constraint between two of the correlation functions

〈sCN 〉 = CNN(t) + MC1N(t) (7)

where the constant CN = (s2 − x2 + 1)/(2s). The two remaining independent correlation
functions CNN(t) and C11(t) must then be calculated by explicitly substituting into
equation (5) the time dependences obtained in equations (A.4) and (A.5). For CNN(t), this is
relatively simple, as one can just use equation (A.2) for SN(t), which is independent of y, to
evaluate it. This leads to

CNN(t) = 〈
C2

N +
(
1 − C2

N

)
cos(st∗)

〉
(8)

which can be evaluated using the simplified weighting factors present in equation (3). From
equation (7), this simplification also applies for C1N(t). We note that equation (8) differs from
the expression for the autocorrelation function in the N-spin classical Heisenberg equivalent
neighbour model only by the x dependence of the Hamiltonian, [11] which is irrelevant as
T → ∞.

The challenge is to calculate C11(t). It is useful to separate the expression for C11(t) into
the four integrals Ii(t) (i = 0, . . . , 3),

C11(t) =
3∑

i=0

Ii(t). (9)

The explicit triple integral representations of the Ii(t) valid for arbitrary T are given in the
appendix, where it is also shown how to reduce them to double integrals.

3. Analytic results for arbitrary N

3.1. Infinite-temperature limit

Here we present our results for the correlation functions with general N values as T → ∞.
As indicated in the appendix, in the limit T → ∞, the triple integrals appearing in (9)
can be reduced to single integrals. For N = 4, the relevant density of states appearing in
equation (4) is D2(x) = 1

2�(x)�(2 − x), so this reduction in the number of integrals is
relatively simple. As T → ∞, the different couplings appearing in the Hamiltonian become
irrelevant for CNN(t), so that it becomes equivalent to that of the N-spin equivalent neighbour
model [11],

lim
T →∞

CNN(t) = 1/N + M[δN + fN(t)] (10)

where fN(t) ∼ (t∗)−N for t∗ 	 1. Since as T → ∞, 〈s2〉 = N, 〈x2〉 = M , and 〈y2〉 = M−1,
from equations (7) and (10), we have

lim
T →∞

C1N(t) = 1/N − δN − fN(t). (11)

For C11(t) and C12(t), even as T → ∞, the situation is more complicated, as the results
depend crucially upon the values of γ = J2/J1. As t → ∞, the time-dependent trigonometric
functions in I1, I2 and I3 oscillate increasingly rapidly and yield vanishing contributions to
limt→∞ C11(t), as stated by the Riemann–Lebesgue lemma [15]. Therefore, for arbitrary N,

lim
t→∞ Cγ �=1

11 (t) = I0 = 〈
S2

1z0

〉
. (12)

We note that I0 depends upon N, and is a rather messy triple integral, but as T → ∞, can be
evaluated exactly, as shown in the appendix.
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At infinite temperature one obtains for N = 4,

lim
t→∞
T →∞

C44(t) = 1
4 + 3δ4 ≈ 0.436 345 (13)

where δ4 = −(11/180) + (8/45) ln 2 ≈ 0.062 115 [10, 11], and

lim
t→∞
T →∞

Cγ �=1
11 (t) ≈ 0.355 496 (14)

the exact expression for which is given in (A.16) in the appendix. In table A1 in the appendix,
we also list the T → ∞ values of limt→∞ Cγ �=1

11 (t) for 3 � N � 11 and compare them with
the T → ∞ values of limt→∞ CNN(t). We note that as T → ∞, for each of these N values,
limt→∞ Cγ �=1

11 (t) < limt→∞ CNN(t). As T → ∞, limt→∞ CNN(t) decreases monotonically
with increasing N to 1/3 as N → ∞ [11]. Since limt→∞ Cγ �=1

11 (t) also decreases monotonically
with increasing N and for 8 � N � 11, its value is less than 1/3, it appears that this inequality
is likely to hold for all N values.

We now turn to the long-time asymptotic behaviour of C11(t) at infinite T. Following the
method described in [9], we first define δCij (t) ≡ Cij (t) − limt→∞ Cij (t). For γ = 0, the
dominant behaviour of limT →∞ C11(t) is given by I3(t), but for 0 �= γ �= 1, it is given by
I2(t). At long times, t 	 1, where t = (1 − γ )t∗, one can evaluate the asymptotic behaviour
as T → ∞ exactly. By integration by parts M times, we find

lim
T →∞
t	1

δCγ �=0,1
11 (t) ∼

E(M/2)∑
p=0

AMp

(t)M
f (M − 2p) cos[(M − 2p)t + Mπ/2] (15)

where

f (y) = 1 + y−2 − (y2 − 1)2

4y3
ln

( y + 1

y − 1

)2
(16)

and AMp is given in the appendix. Although the function f (y) is non-analytic at y = 1, it
can be shown that its derivatives do not contribute to the long-time asymptotic behaviour. In
addition, for t∗ 	 1, one can easily obtain the asymptotic expression of I3(t), leading to

lim
T →∞
t∗	1

δCγ=0
11 (t) ∼ sin(t∗)

4t∗

∫ M−1

0
dy DM−1(y)y3f (y). (17)

In particular, for N = 4, we obtain

lim
T →∞
t∗	1

δC44(t) ∼ − 3

4(t∗)4

[
3

4
− cos(4t∗)

]
(18)

lim
T →∞
t	1

δCγ �=0,1
11 (t) ∼ − 1

8(t̄)3
[f (1) sin(t̄) + f (3) sin(3t̄ )] (19)

lim
T →∞
t∗	1

δCγ=0
11 (t) ∼

(
23

30
− 9

40
ln 3

)
sin(t∗)

t∗
(20)

where equation (18) was given previously [10, 11].
The results presented here differ drastically from those obtained in the four-spin ring and

in the equivalent neighbour model [10, 11], for which only one coupling strength is present.
It is more interesting to compare the present results to the analogous ones obtained for the
isosceles triangle of spins, N = 3 [9]. For N � 4, the infinite-T, long-time behaviour of C11(t)

for γ �= 0, 1 is determined by the integral I2(t) given by equation (A.10). For N = 3, an
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additional contribution to the infinite-T, long-time behaviour of C11(t) arises from I3(t) given
by equation (A.11) [9]. For N � 3, the correlation function C11(t) for γ �= 0, 1 decays slower
than CNN(t) (denoted C22(t) in [9] for N = 3), approaching its long-time asymptotic value
at infinite temperature as (t∗)−M . In the limiting situation γ = 0, corresponding for N = 3
to the three-spin chain (or ‘two-pronged star’) and for N � 4 to an M-pronged star of spins
equally coupled to a central one, as T → ∞ and t∗ 	 1, the correlation function is dominated
by I3(t). In this case, C11(t) approaches its asymptotic limit much more slowly, as (t∗)−1, as
shown in equation (17).

3.2. Low-temperature correlation functions

At any finite temperature, it is not possible to reduce the time-dependent correlation functions
to a single integral representation, even for N = 4. Since the time dependence of the integrand
is a simple trigonometric function, it is convenient to compute the Fourier transforms of the
δCij (t), quantities which are anyhow of direct experimental relevance in neutron scattering
experiments. In this case, it is then possible to express the Fourier transforms in terms of a
single integral representation, which then allows a precise and fast numerical integration. We
limit our numerical work to the case of the squashed tetrahedron, N = 4 (M = 3).

We define the Fourier transform as usual as

δC̃ij (ω) = |J1|
π

∫ +∞

−∞
dt exp(iωt)δCij (t). (21)

The position of the various peaks as a function of γ may be obtained analytically in the
T → ∞ limit through an asymptotic evaluation of the integrals, or numerically by plotting the
curves at large enough values of |α| ∝ 1/T . In the appendix, we have sketched the derivation
of the low-temperature mode frequencies for general N, for both ferromagnetic (FM) and
antiferromagnetic (AFM) cases. For ferromagnetic couplings, we then find

	1(γ )/J1 =
{
M + 1 for γ � −1/M

1 − 1/γ for γ < −1/M
(22)

	2(γ )/J1 =
{

1 + Mγ for γ � −1/M

0 for γ < −1/M
(23)

	3(γ )/J1 =
{
M|1 − γ | for 1 �= γ � −1/M

1 − 1/γ for γ < −1/M
(24)

	4(γ )/J1 =
{|M(2 − γ ) + 1| for γ � −1/M

2 (1 − 1/γ ) for γ < −1/M
(25)

and for antiferromagnetic couplings, we find

	1(γ )/|J1| =
{|1 − 1/γ | for γ � 1/M

M − 1 for γ < 1/M
(26)

	2(γ )/|J1| =
{

0 for γ � 1/M

1 − Mγ for γ < 1/M
(27)

	3(γ )/|J1| =
{|1 − 1/γ | for γ � 1/M

M(1 − γ ) for γ < 1/M
(28)

	4(γ )/|J1| =
{

2 |1 − 1/γ | for γ � 1/M

M(2 − γ ) − 1 for γ < 1/M.
(29)

We remark that these formulae also apply for the isosceles triangle, M = 2 [9].
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Figure 1. The low-T magnon mode frequencies for the FM (left) and AFM (right) cases for the
squashed tetrahedron (M = 3).
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Figure 2. Plots of log10[δC̃11(ω)] versus ω/|J1| for the squashed tetrahedron (M = 3) at very
low T. Left: FM case at α = 50 for γ = 0.3, 0.6, 0.9. Right: AFM case for γ = 0.6 at various
low-T values.

4. Low-temperature numerical results for N = 4

In figure 1, we plot the mode frequencies 	i(γ ) relative to |J1|, for the squashed tetrahedron
case M = 3. The left and right panels correspond to the FM and AFM cases, respectively.
The circle in the left panel of figure 1 denotes the absence of a zero-frequency peak at
all temperatures for the regular tetrahedron. We have verified these mode frequencies by
numerical evaluation of the explicit integral representations of δC̃11(ω) and δC̃44(ω). For
example, in figure 2 we show the low-T behaviour of δC̃11(ω), presented as log10[δC̃11(ω)]
versus ω/|J1|. For the FM case with γ = 0.3 at α = 50 pictured in the left panel of
figure 2, δC̃11(ω) exhibits very sharp peaks at the frequencies 	i , where 	i/J1 = 4, 1.9, 2.1
and 6.1 for i = 1, . . . , 4, respectively. δC̃44(ω) has a single sharp mode at the frequency 	1.
This figure also shows that for γ = 0.6, the FM δC̃11(ω) modes are also sharp at α = 50,
appearing at 4, 2.8, 1.2 and 5.2, respectively, and at γ = 0.9, they appear at 4, 3.7, 0.3
and 4.3, respectively. We note that the 	4 mode is much weaker in intensity than the other
modes at this temperature. For the AFM case, the modes tend to be much broader, as pictured
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Figure 3. Left: plots for M = 3 of the 	1 and 	2 modes in n2δC̃ii (ω) versus |α|(ω/J1 − n)/n

with i, n = 1, 4 for the FM star, γ = 0, at α = 5, 10, 20. Right: plots for M = 3 of the 	1 and 	2
modes in δC̃ii (ω) versus |α|(ω/|J1| − n)/n with i = 1, 4 and n = 1, 2, for the AFM star, γ = 0,
at α = −5,−10,−20 and −40.

for γ = 0.6 in the right panel of figure 2. In this case, the low-T mode frequencies satisfy
	i/|J1| = 2/3, 0, 2/3, 4/3, so that 	1 and 	3 are degenerate. This degeneracy is evident in
the shape of the combined mode, which appears to consist of two peaks with different widths,
both centred at ω/|J1| = 2/3. In addition, 	2 is a central peak, which grows in intensity as T
decreases.

For the special case of the three-pronged star, γ = 0, the leading behaviours of the low-T
modes are presented in figure 3. For the FM star, pictured in the left panel of figure 3, we
have plotted n2δC̃ii (ω) versus |α|(ω/J1 − n)/n for the largest amplitude modes 	1 and 	2,
for i = 1, 4. Since 	1 and 	2 appear at ω/J1 = 4, 1, respectively, and since the 	1 modes
present in δC̃44 and δC̃11 are weaker than the 	2 mode, this presentation was chosen for clarity.
Each of these modes was plotted at α = 5, 10 and 20, demonstrating the low-T scaling that
occurs. We also note that the 	2 mode in δC̃11(ω) drops discontinuously by many orders of
magnitude (and to zero as T → 0) at ω/J1 = 1, as indicated by the ≈ sign. This behaviour is
very similar to that of the FM chain, except for the difference in the frequencies involved [9].

The AFM three-pronged star has parameters close to those present in the squashed
tetrahedron Fe4 [4, 5]. The strongest low-T modes are pictured in the right panel of
figure 3, in which we plotted δC̃ii (ω) versus |α|(ω/|J1| − n)/n for i = 1, 4, n = 1, 2
and α = −5,−10,−20 and −40. Since these modes are sufficiently close in magnitude, the
δC̃ii (ω) are not scaled in this figure. The additional modes at ω/|J1| = 3, 5 are very weak,
and are not shown. As for the FM case, 	2 drops discontinuously by orders of magnitude
at ω/|J1| = 1, vanishing as T → 0. In addition, in both cases, the mode shapes approach
uniform functions of |α|(ω/|J1|−n) as T → 0. This behaviour is distinctly different than that
obtained for the AFM three-spin chain, [9] because in that case, the 	1 and 	2 modes present
in δC̃11(ω) both approach the same frequency, ω/|J1| = 1, as T → 0, making it difficult to
separate them.

It is interesting to compare these findings with the simpler results in the case of a perfect
tetrahedron (the equivalent neighbour model with N = 4 [11]). There only one low-T mode
is present, at 	/J = 4 in the ferromagnetic case, or at 	 = 0 in the antiferromagnetic case.
The low-T scaling of these single modes was shown previously [11]. Allowing one spin to
be coupled differently induces a splitting in the spectrum of low-T magnons, a phenomenon
which was already observed in the study of the isosceles triangle of spins [9].
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Figure 4. Plots for M = 3 of δC̃ii (ω) versus ω/|J1| at various temperatures, for the AFM case
with γ = −0.05, appropriate for Fe4 [4].
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Figure 5. Plots for M = 3 of δC̃11(ω) versus ω|α|1/2/|J1| at |α| = 160, 1280 for the 	2 modes at
the onsets of the central peak, γ = ±1/3 for the FM and AFM cases, respectively.

In figure 4, we plot the full temperature dependence of the two primary modes present
for the AFM case with γ = −0.05, which is thought to be a better approximation to the
parameters present in Fe4 than in the right panel of figure 3 [4, 5]. In this figure, we show the
results of calculations for both δC̃11(ω) and δC̃44(ω) at α = 0,−1,−5 and −20. At infinite
T , α = 0, δC̃44(ω) exhibits a broad peak with a maximum at ω/|J1| ≈ 1.7, and δC̃11(ω) has
substantial weight at low frequencies, a well-defined peak at ω/|J1| ≈ 0.8, and a small peak
at ω/|J1| ≈ 1.05. As T is lowered, the peak in δC̃44(ω) develops into the sharp 	1 mode,
approaching ω/|J1| = 2 as T → 0. In addition, δC̃11(ω) develops into the two modes 	2 and
	1 at ω/|J1| = 1.15 and 2, respectively. The minor peaks at ω/|J1| ≈ 3.15 and 5.15 are too
weak to show up on the scale used in this figure.

Comparing the right panel of figure 3 with figure 4, we see that both figures exhibit a
large low-T peak at ω/|J1| = 2, but that the second prominent peak appears at ω/|J1| = 1 and
1.15, respectively, obtained for J2/J1 = 0 and J2/J1 = −0.05, respectively, both consistent
with magnetization experiments on Fe4 [4, 5]. More generally, we find prominent peaks at
ω/|J1| = 2 and ω/|J1| = 1 − 3γ , as indicated in figure 1. Hence, the precise positions
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of the two prominent peaks obtained from neutron scattering experiments can provide an
independent measure of the exchange couplings J1 and J2.

Finally, in figure 5 we show low-T plots at N = 4 of δC̃11(ω) versus ω|α|1/2/|J1| for the
special points γ = ±1/3, corresponding to the onsets of the central peak of the mode 	2. In
both cases, curves for |α| = 160, 1280 are shown. Remarkably, the FM and AFM cases are
nearly identical, when plotted in this manner. As for the similar scalings at the endpoints of
the parameter range of the central peak for the isosceles triangle, [9] this scaling only applies
to the frequency, without a corresponding scaling of δC̃11(ω), so that the overall scaling does
not correspond to a scaling of the time in δC11(t). However, for the isosceles triangle, the
FM and AFM cases appeared to be nearly similar at temperatures that differed by a factor of
about 8, whereas for the squashed tetrahedron, the temperatures are essentially identical.

5. Conclusions

We have solved for the time correlation functions of the N-spin squashed equivalent neighbour
model, with one spin coupled via the classical Heisenberg exchange J1 to the M = N − 1
other spins, all of which are coupled to each other via a different Heisenberg exchange J2.
Our results are qualitatively similar to those of the isosceles triangle, N = 3, but show that
for arbitrary N � 3, there are only four low-temperature modes, given by equations (22)–(25)
and (26)–(29) for ferromagnetic and antiferromagnetic signs of J1, respectively.

At infinite T, we showed explicitly that the long-time asymptotic behaviour of the
autocorrelation function Cγ=0

11 (t) on a prong of an M-pronged star approaches its asymptotic
limit as (t∗)−1. We also showed that for 3 � N � 8, the infinite-T, long-time asymptotic limit
of CNN(t) is greater than that of Cγ �=1

11 (t), and speculate that this relation is likely to hold for
arbitrary N. We also showed that at infinite T , C0�=γ �=1

11 (t) approaches its long-time asymptotic
limit as (t)−M , one power slower than does CNN(t).

We showed explicitly that these mode frequencies apply for the isosceles triangle (N = 3)

and for the squashed tetrahedron (N = 4) [9]. For the particular parameter values appropriate
for the single molecule magnet Fe4, with four S = 5/2 Fe+3 spins on the corners of a squashed
tetrahedron, we expect that this classical calculation of the Fourier transform of the time
correlation functions will represent a reasonably good envelope of the δ-functions present in
the quantum mechanical treatment of this model, provided that the temperatures are not too
low with respect to |J1|. Thus, we expect the qualitative features shown in figure 4 and the
right panel of figure 3 to be observable in inelastic neutron scattering studies of single crystals
of Fe4.

The two prominent modes present in figure 4 and in the right panel of figure 3, obtained
with parameters consistent with magnetization studies on Fe4 [4, 5], are well separated from
each other, unlike the case of the N = 3 analogue, the AFM three-spin chain, for which the
two peaks are degenerate as T → 0. Moreover, since |γ | � 1, their precise positions are
predicted to be at ω/|J1| = 2 and ω/|J1| = 1 − 3γ . Hence, observation of such peaks in
neutron scattering experiments on Fe4 can provide an independent measure of the exchange
couplings J1 and J2. Thus, the three-pronged star (N = 4 with J2 = 0) is significantly
different from the three-spin chain (N = 3 with J2 = 0), and these differences should
easily be discernible in neutron scattering experiments. We thus predict strong differences in
inelastic neutron scattering experiments on the squashed tetrahedron Fe4 from those on the
isosceles triangle, Gd3 [16], and on three-spin chain systems such as non-metallic variations
of 9L-BaRuO3 [17, 18].

In summary, we have solved for the time correlation functions for N classical Heisenberg
spins interacting in the squashed equivalent neighbour model. In this model, one spin interacts
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with the other N − 1 spins with exchange constant J1, and the remaining N − 1 spins interact
with each other with exchange coupling J2. At low temperature, the correlation functions
exhibit four peaks, a low-T behaviour which is qualitatively different from that obtained for
the four-spin ring and the equivalent neighbour model [10, 11]. In those models, the correlation
functions exhibit one and two low-T modes, respectively. The N = 3 isosceles triangle is
a special case of the N-spin squashed equivalent neighbour mode. Because of its simplified
density of states, its correlation functions can be expressed as double integrals, instead of the
general cases requiring triple integrals for N � 4. However, we showed that the special cases
of the three-spin chain and the three-pronged star, for which J2 = 0 and N = 3, 4, respectively,
the correlation functions are qualitatively different, exhibiting one and two prominent peaks,
respectively, and the remaining two peaks are very weak. Thus, the dynamics of the
squashed equivalent neighbour model are very different from those predicted for any other spin
system.

Appendix

We first outline the derivation of the time dependence of SN,1→M and S1. In order to compute
the time-dependent correlation functions, we first solve the classical equations of motion
appropriate for the Hamiltonian, equation (2),

ṠN,1→M = J1SN,1→M × S (A.1)

and Ṡ = 0, so that S is a constant of motion. Following the technique illustrated in [9–11],
we obtain

SN,1→M(t) = CN,1→M ŝ + AN,1→M × [cos(st∗)x̂ − sin(st∗)ŷ] (A.2)

where t∗ = J1t, ŝ = S/s = x̂ × ŷ, CN = (s2 − x2 + 1)/(2s), C1→M = (s2 + x2 − 1)/(2s),

A2
N = 1 − C2

N and AN = −A1→M .
We must also consider the equations of motion for the Si (t), i = 1, 2, . . . , M . In order

to calculate the time correlation functions, symmetry allows us to choose just one of them,
i = 1. We then write S1→M = S1 + S2→M , and solve

Ṡ1,2→M = J2S1,2→M × S + (J1 − J2)S1,2→M × SN . (A.3)

After defining S1± = S1x ± iS1y , we obtain

S1±(t) = −ANS1z0

C1→M

exp(∓ist∗) − AN
S1z0

2(C1→M ∓ x)
× exp{i[∓s + (1 − γ )x]t∗ + iφ0}

− AN
S1z0

2(C1→M ± x)
× exp{i[∓s − (1 − γ )x]t∗ − iφ0} (A.4)

S1z(t) = S1z0 + 
S1z0 cos[(1 − γ )xt∗ + φ0] (A.5)

where φ0 is an arbitrary phase, and similar equations for the components of S2→M . After
combining these equations with analogous ones for the components of S1→M , the constants
appearing in equations (A.4) and (A.5) must satisfy

S1z0 = C1→M

2

(
1 +

1 − y2

x2

)
(A.6)

(
S1z0)
2 = A2

1→M

x2

[
1 − (x2 − y2 + 1)2

4x2

]
(A.7)

where y = |S2→M |.
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The integrals appearing for M � 3 in equation (9) are

I0 = 〈
S2

1z0

〉
(A.8)

I1(t) =
〈

A2
NS2

1z0

C2
1→M

cos(st∗)

〉
(A.9)

I2(t) = 1
2 〈(
S1z0)

2 cos[(1 − γ )xt∗]〉 (A.10)

I3(t) = 1

4

〈
A2

N(
S1z0)
2

(
cos {[s + (1 − γ )x]t∗}

(x + C1→M)2
+

cos {[s − (1 − γ )x]t∗}
(x − C1→M)2

)〉
. (A.11)

The density of states for N spins is given by [11]

DN(x) = �(x)

E[(N−1)/2]∑
p=0

�(N − 2p − x)�(x − N + 2p + 2)dN−2p(x) (A.12)

dN−2p(x) =
p∑

k=0

(−1)k(N − 2k − x)N−2

2N−1(N − 2)!

(
N

k

)
(A.13)

where E(x) is the largest integer in x and �(x) is the Heaviside step function. As noted in
equation (4), the Ii(t) contain integrations over DM−1(y).

Although the Ii(t) are explicitly triple integrals over x, y and s, the only y dependence
of the integrand appears in the expressions for S2

1z0 and (
S1z0)
2, given by equations (A.6)

and (A.7) plus the expressions following equation (A.2). In most of these integrals, one has
to evaluate

Ii =
∫ M−1

0
dy

∫ y+1

|y−1|
dxgM(x, y)f (x, t) (A.14)

=
∫ M−2

0
dx f (x, t)

∫ x+1

|x−1|
dy gM(x, y) +

∫ M

M−2
dx f (x, t)

∫ M−1

|x−1|
dy gM(x, y) (A.15)

where gM(x, y) has either the form a(x)[1 − (x2 + 1 − y2)2/(4x2)]DM−1(y) or the form
a(x)(x2 + 1 − y2)2DM−1(y), and f (x, t) involves an integral over s. In most cases, the
y integrals can be performed before the x integrals, reducing the triple integrals to double
integrals, precisely as was done for the equivalent neighbour model with M → N [11].

We now calculate the exact infinite-time, infinite-temperature limit of the correlation
function C11(t) for γ �= 1 from equation (A.8). We first perform the integration over s, and
then invert the order of the remaining two integrations, as outlined above. For N = 4, we then
find

lim
t→∞
T →∞

Cγ �=1
11 (t) = 29

360
+

π2

384
+

83

360
ln 2 +

3

40
ln 3 − 1

96

[
Li2

(
−1

2

)
+ Li2

(
−1

3

)]

− 1

192

[
ln

(
2

3

)]2

≈ 0.355 496 (A.16)

where Li2(z) is the standard dilogarithm function

Li2(z) =
∫ 0

z

ln(1 − t)

t
dt. (A.17)
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Table A1. Infinite t, T limits of the autocorrelation functions.

N lim t→∞
T →∞

Cγ �=1
11 (t) lim t→∞

T →∞
CNN(t)

3 0.370 130 0.480 521
4 0.355 496 0.436 345
5 0.342 702 0.416 362
6 0.337 024 0.401 888
7 0.333 611 0.384 419
8 0.331 595 0.378 635
9 0.330 327 0.374 027

10 0.329 516 0.370 270
11 0.328 992 0.367 148

The exact formulae become increasingly complicated with increasing N, so in table A1, we
only list the numerical values of those additional ones for 3 � N � 11, along with those of
the infinite t, T limits of CNN(t).

Next, we sketch our procedure for obtaining limT →∞ δC0�=γ �=1
11 (t) as t 	 1 for arbitrary N.

From equation (A.10), we first perform the integration over s, giving us a function proportional
to f (x) given by equation (16). To avoid the singularity at x = 1, we do not invert the
order of the remaining two integrals, but instead integrate with respect to x by parts twice,
leading to

lim
T →∞
t	1

δCγ �=0,1
11 (t) ∼ − 1

8t
2

∑
σ=±1

∫ M−1

0
y dy DM−1(y)f (y + σ) cos[(y + σ)t]. (A.18)

We then integrate with respect to y a total of M − 2 times, noting that all terms proportional
to derivatives of f sum to zero. We finally obtain

lim
T →∞
t	1

δCγ �=0,1
11 (t) ∼ 1

(t)M

E(M/2)∑
p=0

AMpf (M − 2p) cos[(M − 2p)t + Mπ/2] (A.19)

AMp = (−1)p+M

2M+1

[
(1 − δp,M/2)(M − 2p − 1)

(
M − 1

p

)

− (1 − δp,0)(M − 2p + 1)

(
M − 1

p − 1

)]
(A.20)

where f (x) is given by equation (16). We note that f (0) = 8/3 and f (1) = 2.
We now sketch our derivations of the low-temperature mode frequencies. We first note

from equations (8) and (A.9) that the Fourier transforms of δCNN(t) and I1(t) both contain
δ(s − ω̃), where ω̃ = ω/|J1|. From the above discussion, each of these then can be reduced
to a single integral over x,

K0(ω̃) =
∫ min(M,ω̃+1)

|ω̃−1|
dx QN(x, ω̃) e[α(γ−1)x2+ω̃2] (A.21)

where QN(x, ω̃) is different for δC̃NN(ω) and the 	1 mode contribution to δC̃11(ω). In both
cases it is independent of α and T, and is therefore irrelevant to the determination of the mode
frequency 	1 in the limit T → 0. The integration limits arise from the condition that the
δ-function is restricted by |x − 1| � s � x + 1. For the FM case, α > 0, we first consider
the case γ < 0. As α → ∞, the integral is maximized by choosing x to have its minimum



1108 M Ameduri and R A Klemm

value, x = |ω̃ − 1|. We then maximize the resulting expression for the exponent as a function
of ω̃, which occurs at ω̃ = ω̃∗ = 1 − 1/γ . For γ > 1, the minimum x value, |ω̃ − 1|, is
limited for large ω̃ by M, so ω̃∗ = N . The crossover occurs when these frequencies are equal,
N = 1 − 1/γ , or γ = −1/M . Setting ω̃∗ = 	1/|J1|, we thus recover equation (22). For
the AFM case as T → 0, α → −∞, we want to minimize (γ − 1)x2 + ω̃2 in the exponent.
For γ > 1, this occurs at x = |ω̃ − 1|, and for γ < 1, it occurs at x = ω̃ + 1. In both cases,
optimizing the exponent leads to ω̃∗ = |1−1/γ |. The latter case is restricted by the limitation
ω̃∗ = M − 1. The crossover between these two limits occurs at M = |1 − 1/γ |, or γ = 1/M .
Setting ω̃∗ = 	1/|J1|, we then recover equation (26).

We now focus on the integral I2(t), equation (A.10). We first perform the y integral
as sketched above. Then, the integral over s does not contain any time dependence, and as
T → 0, it is dominated by the factor exp(αs2). After integration by parts, we obtain the single
integral over x, which has the form

I2(t) ∼
∫ M

0
dxPN(x) exp[α(γ x2 ± 2x)] cos[(1 − γ )xt∗] (A.22)

where PN(x) is independent of α, as in equation (3). Fourier transformation then involves
the δ-function, δ(ω̃ − |1 − γ |x), so that the position of the mode due to I2 is found by
optimizing the expression exp{α[γ ω̃2/(1 − γ )2 ± 2ω̃/|1 − γ |]}. For the FM case and γ < 0,
we maximize this function with the + sign, leading to ω̃∗ = 1−1/γ . For γ > 0, the δ-function
was restricted by x � M , leading to ω̃∗ = M|1 − γ |. These values for 	3/|J1| = ω̃∗ are
equal at γ = −1/M . Combining, we obtain the FM 	3 mode frequencies, equation (24).
For the AFM case as α → −∞, we choose the − sign in the above exponent, and minimize
γ ω̃2/(1 − γ )2 − 2ω̃ in the exponent. For γ > 0, this occurs at ω̃∗ = |1 − 1/γ |. For γ < 0,
the overall exponent is bounded by ω̃∗/|1 − γ | � M . Combining, we obtain the expressions
for 	3/|J1| for the AFM case, equation (28).

We now turn our attention to I3. In taking the Fourier transform, there are four δ-functions,
δ[ω̃ − s − (1 − γ )x], δ[ω̃ + s + (1 − γ )x], δ[ω̃ + s − (1 − γ )x] and δ[ω̃ − s + (1 − γ )x].
These δ-functions lead after the usual reductions of the y integrals to the following integrals,
respectively,

K1(ω) =
∫ min[M,(ω̃+1)/(2−γ )]

max[(1−ω̃)/γ,(ω̃−1)/(2−γ )]
dxRN1(x, ω̃)f+(x, ω̃) (A.23)

K2(ω) = �(γ − 1)

∫ min[M,�(γ−2)(ω̃+1)/(γ−2)]

max[0,(1+ω̃)/γ,(ω̃−1)/(γ−2)]
dxRN2(x, ω̃)f−(x, ω̃) (A.24)

K3(ω) = �(1 − γ )

∫ min[M,(1−ω̃)/γ ]

max[0,−(1+ω̃)/γ,(ω̃+1)/(2−γ )]
dxRN3(x, ω̃)f+(x, ω̃) (A.25)

K4(ω) =
∫ min[M,(ω̃+1)/γ ]

max[0,(ω̃−1)/γ ]
dxRN4(x, ω̃)f−(x, ω̃) (A.26)

f±(x, ω̃) = exp{α[ω̃2 + γ (γ − 1)x2 ± 2ω̃(γ − 1)x]} (A.27)

where the RNi(x, ω̃) are independent of T.
We first consider the AFM case of K1, α → −∞. For γ > 1, all terms in the exponent

are negative, so we need to minimize the function ω̃2 + γ (γ − 1)x2 + 2xω̃(γ − 1). Setting
x = (ω̃−1)/(2−γ ), and optimizing this function with respect to ω̃, we find that its minimum
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occurs at ω̃∗ = 2(1 − 1/γ ). For γ < 0, the last term in the function to be minimized is
negative, so we take x = (ω̃ + 1)/(2 − γ ) from the upper integration limit. Optimizing the
function, we find ω̃∗ = 2(1/γ − 1), so both γ regions satisfy ω̃∗ = 2|1 − 1/γ |. However, this
is subject to the constraint on the upper integration cutoff, which is (ω̃∗ + 1)/(2 − γ ) = M

or ω̃∗ = 2M − 1 − Mγ . These values are equal at γ = 1/M . Altogether, ω̃∗ = 	4/|J1| for
the AFM case in equation (29). For the FM case with γ < 0, we take x = (ω̃ + 1)/(2 − γ ),
optimize, and again obtain ω̃∗ = 2(1 − 1/γ ). The cutoff occurs when the lower limit,
x = (ω̃ − 1)/(2 − γ ), equals M, giving ω̃∗ = 2M + 1 − Mγ . The crossover occurs at
γ = 1/M , as given by equation (25) for 	4/|J1|.

Next, we consider the FM case of K4. First for α → ∞, γ < 0, it is easily seen that the
exponent in f−(xω̃) is positive definite. Thus, we might expect the upper limit for x to apply.
But, this is either the cutoff, M, or a negative quantity, (ω̃ + 1)/γ . Thus, the only positive limit is
the lower cutoff, x = (ω̃−1)/γ , which can be positive for ω̃ < 1, leading to a larger exponent
than obtained by setting x = 0. However, f−[(ω̃ − 1)/γ, ω̃] = exp[(α/γ )(ω̃2 + γ − 1)],
which for α > 0, γ < 0 has a maximum at ω̃∗ = 0, corresponding to a central peak. This will
be the mode frequency until (ω̃ − 1)/γ = M , the upper cutoff, resulting in ω̃∗ = 1 + Mγ .
The crossover occurs at γ = −1/M . Thus, this mode reduces to 	2/|J1| as given by
equation (23). For the AFM case for γ > 0, we set x = (ω + 1)/γ , and again we find
f−[(ω̃ + 1)/γ, ω̃] = exp[−(|α|/γ )(ω̃2 + γ − 1)], which has a maximum at ω̃∗ = 0. This form
continues until (1 − ω̃)/γ = M , which occurs at ω̃∗ = 1 − Mγ . The crossover occurs at
γ = 1/M . Thus, this gives rise to the mode 	2/|J1| in equation (27).

We now consider the K2 integral. This makes a very small contribution, because of the
severe limitation that it vanishes unless γ > 1. For the AFM case, the exponent is optimized
at x = x∗ = ω̃/γ , and then optimizing the mode frequency with respect to ω̃, we find that
ω̃∗ = 0, so that K2 for AFM coupling contributes to 	2/|J1|. For the FM case, the maximum
exponent occurs at x = M , and from the δ-function restrictions, we see that K2 makes a
contribution to the 	4/|J1| mode.

Finally, we discuss briefly the K3 case, for which γ < 1. Setting γ < 0 for the FM case,
the optimum situation is obtained when ω̃∗ = 0, so that it adds to the 	2/|J1| mode. For the
AFM case, the optimum x value is x∗ = −ω̃/γ , and this is restricted by x � M . Hence, K3

essentially makes a contribution to the 	2 mode for the AMF case, as well.
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